Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications
نویسندگان
چکیده
In this study, ZnO/SiO2-clay heterostructures were successfully synthesized by a facile two-step process applied to two types of clays: montmorillonite layered silicate and sepiolite microfibrous clay mineral. In the first step, intermediate silica-organoclay hybrid heterostructures were prepared following a colloidal route based on the controlled hydrolysis of tetramethoxysilane in the presence of the starting organoclay. Later on, pre-formed ZnO nanoparticles (NP) dispersed in 2-propanol were incorporated under ultrasound irradiation to the silica-organoclay hybrid heterostructures dispersed in 2-propanol, and finally, the resulting solids were calcinated to eliminate the organic matter and to produce ZnO nanoparticles (NP) homogeneously assembled to the clay-SiO2 framework. In the case of montmorillonite the resulting materials were identified as delaminated clays of ZnO/SiO2-clay composition, whereas for sepiolite, the resulting heterostructure is constituted by the assembling of ZnO NP to the sepiolite-silica substrate only affecting the external surface of the clay. The structural and morphological features of the prepared heterostructures were characterized by diverse physico-chemical techniques (such as XRD, FTIR, TEM, FE-SEM). The efficiency of these new porous ZnO/SiO2-clay heterostructures as potential photocatalysts in the degradation of organic dyes and the removal of pharmaceutical drugs in water solution was tested using methylene blue and ibuprofen compounds, respectively, as model of pollutants.
منابع مشابه
Ag-Coated Heterostructures of ZnO-TiO2/Delaminated Montmorillonite as Solar Photocatalysts
Heterostructures based on ZnO-TiO₂/delaminated montmorillonite coated with Ag have been prepared by sol-gel and photoreduction procedures, varying the Ag and ZnO contents. They have been thoroughly characterized by XRD, WDXRF, UV-Vis, and XPS spectroscopies, and N₂ adsorption, SEM, and TEM. In all cases, the montmorillonite was effectively delaminated with the formation of TiO₂ anatase particle...
متن کاملPorous-ZnO-Nanobelt Film as Recyclable Photocatalysts with Enhanced Photocatalytic Activity
In this article, the porous-ZnO-nanobelt film was synthesized by oxidizing the ZnSe-nanobelt film in air. The experiment results show that the porous-ZnO-nanobelt film possesses enhanced photocatalytic activity compared with the ZnO-nanobelt film, and can be used as recyclable photocatalysts. The enhanced photocatalytic activity of the porous-ZnO-nanobelt film is attributed to the increased sur...
متن کاملSynthesis and Characterization of Porous Clay Heterostructures
Porous clay heterostructures (PCH) based on modified montmorillonite were synthesized using different reaction conditions (different hydration degrees, pH values and reaction times). The PCH precursors and PCH were characterized using FTIR Spectroscopy and X-Ray Diffractions (XRD). The XRD results showed that basal distance of porous clay heterostructures was significantly influenced by the mod...
متن کاملRoom-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties
A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution c...
متن کاملEnhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures
We studied the photocatalytic properties of rational designed TiO2-ZnO hybrid nanostructures, which were fabricated by the site-specific deposition of amorphous TiO2 on the tips of ZnO nanorods. Compared with the pure components of ZnO nanorods and amorphous TiO2 nanoparticles, these TiO2-ZnO hybrid nanostructures demonstrated a higher catalytic activity. The strong green emission quenching obs...
متن کامل